Capital ModularXC
Automated Harness Design

PRODUCT OVERVIEW
Mentor Graphics Capital® ModularXC enables harness engineers to create fully detailed, validated, and manufacturing-ready harness designs from 150% harness designs. Buildable harness variants (including diagrams and BOMs) are automatically generated, based on user-defined choices for decomposition—Composite-Derivative or Modular decomposition. Modular decomposition offers both functional module decomposition, for example “tail lamps,” and production module decomposition, for example “ECU connector sub-assembly.”

MODULAR DESIGN AUTOMATION
Functional assignment algorithms identify modules based on codes assigned to the wires, then automatically identify and configure all related components—connectors, protections, clips, etc.—to complete the definition of each module. Production assignment algorithms identify and configure the optimum set of manufacturing subassembly modules, based on user-defined best-practice rules and constraints to increase manufacturing efficiencies and reduce costs.

AUTOMATED ENGINEERING AND VALIDATION
The Capital ModularXC selection routines automatically select terminals, seals, cavity plugs, tapes, tubes, heat-shrink sleeves, and all other harness components to create a full manufacturing BOM.

Automated engineering functions calculate: manufacturing wire lengths, bundle diameters, optimized splice positions, taping quantities, harness weight, and other quantities that describe the finished design.

Capital ModularXC—Harness engineering with automated module breakdown.
Multiple, configurable, design-rule-checks are provided to ensure the final design meets the organization’s defined best-practices. Automated design comparison facilities identify graphical and specification changes between different revisions.

MODULES, OPTIONS, AND VARIANTS MANAGEMENT

Capital ModularXC provides parallel management of functional modules, production modules, derivatives and their code relationships, with automated creation of technical modules and assignation of module codes to harness objects. A wide variety of module assignment algorithms are provided, and these can be extended with customized algorithms.

Capital ModularXC can manage multiple harness variants from a 150% parent design. The tool automatically identifies which components are assigned to which variant and compiles the manufacturing BOM for each.

COLLABORATIVE DESIGN MERGE

Design changes from MCAD and other tools can be merged into existing harness designs continuously—without overwriting locally mastered design details and attributes. Change policies are used to control how Capital ModularXC should respond to design changes originating from multiple sources; the system automatically assesses the design change impact and applies the changes to the harness design.

MCAD INTEGRATION AND THIRD-PARTY DATA EXCHANGE

Standard integrations with popular MCAD platforms include CATIA V4, CATIA V5, CATIA V6, Siemens NX, Pro/ENGINEER, and I-deas. Various data transfer standards are supported, including KBL. Web services and API interfaces provide for deep integration with the IT infrastructure.

CAPITAL — PLATFORM LEVEL ELECTRICAL ENVIRONMENT

Capital is a suite of software applications that efficiently creates and uses electrical design data. The applications respond to the ever-growing importance and complexity of vehicle electrical/electronic systems. Powerful technologies help optimize business value by reducing the design, validation, manufacturing, and servicing costs associated with electrical distribution systems and wire harnesses.

Developed for transportation platforms such as aircraft, automobiles, and off-road vehicles, Capital is scalable from small, localized projects through to complete enterprise-wide deployments. The suite spans an extended flow from vehicle concept and electrical architecture definition to wire harness manufacture and vehicle maintenance. The core Capital tools can be implemented individually or deployed together in a unified flow that seamlessly matures data within a consistent environment. Robust integration with adjacent domains (such as MCAD and PLM) is fully supported, as is cross-organizational collaboration.